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Abstract

The report focuses on replicating and extending the GANITE model for estimating

individualized treatment effects using generative adversarial nets. It addresses the

challenge of causal effect estimation, particularly Individualized Treatment Effect (ITE)

estimation, using a Generative Adversarial Network (GAN) framework. The report

includes a detailed explanation of the problem formulation, literature review, dataset

description, performance metrics, network architecture, and training algorithm of the

GANITE model. The experiments and results section compares GANITE with other

methods like OLS, k-NN, and BART, emphasizing its superior performance in

estimating heterogeneous effects and average treatment effects. The extension section

explores improvements through deeper architecture, advanced optimization algorithms,

and simultaneous training. The report concludes with a discussion on the potential of

advanced computational techniques in predictive accuracy and suggests directions for

future research as wee as the potential limitation of this method.
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Replidation GANITE: Estimation of Indivisualized Treatment Effects Using Generative

Adversarial Nets

Context and motivation

Causal effect estimation is a challenging problem since it includes the counter

factual outcome. Therefore, researchers have focused on the expectation of the

treatment effect such as Average Treatment Effect (ATE) and Average Treatment Effect

on the Treated (ATT). However, the direct estimation of Individualized Treatment

Effect (ITE) is more preferable, if the challenging task is overcome where we are

supposed to calculate an unbiased estimator of an individual’s potential outcomes

without access to the counter factual data.

The target paper, named GANITE: Estimation of individualized treatment effects

using generative adversarial nets (Yoon, Jordon, and Van Der Schaar (2018)), attempts

to resolve this contradictory conundrum and does so at a certain level. The motivation

of the paper is that the replication of the novel approach to estimate the causal effect

using observational data which has the natural shortcoming, that is, treatment selection

bias to be used for estimation, causing the trained model from the biased data not to be

generalized well to the entire population.

In order to address the challenge, the research utilizes Generative Adversarial

Network (GAN, Goodfellow et al. (2020)) generating the counterfactuals to be used the

calculation of ITE; based on the feature data, treatment variables, and factual outcome,

the generator network called G artificially fabricates the counter factual outcome.

Literature Reviews

In the field of Individualized Treatment Effect (ITE) estimation, prior research

has employed various methodologies. One common approach is to learn a separate

model for each treatment, but this method often overlooks selection bias, resulting in

models biased towards their specific treatment populations. Another widespread

strategy involves the treatment as a feature within a single model. This approach

adjusts for the mismatch between the sample distribution and the distributions of
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treated and control groups to mitigate selection bias. Techniques used here include

tree-based models, as seen in works by Chipman, George, and McCulloch (2012), Wager

and Athey (2018), and others; doubly-robust methods; k-nearest neighbor; propensity

and matching-based methods (Crump, Hotz, Imbens, and Mitnik (2008)); and deep

learning approaches Johansson, Shalit, and Sontag (2016); Shalit, Johansson, and

Sontag (2017). A significant challenge in this method is balancing the need for

predictive information while minimizing biased information, especially pertinent in

medical settings where treatment decisions are often based on predictive features.

Additionally, some researchers have explored multi-task model approaches. This

involves using multi-task neural networks to simultaneously estimate selection bias,

controlled outcomes, and treated outcomes, integrating shared layers across these tasks.

Notably, Alaa, Weisz, and Van Der Schaar (2017) implemented this using multi-task

neural nets, while Alaa and Van Der Schaar (2017) applied a Gaussian Process

approach. These approaches are distinctive for their ability to incorporate

counterfactuals and provide confident estimates through credible intervals, achieved by

incorporating posterior distributions in the model learning process.

Problem Formulation

The research is assumed to be in accordance with the Rubin-Neyman causal model

Rubin (2005). Consider a feature space X of dimension s and a set of possible outcomes

Y . The joint distribution µ on X × {0, 1}k × Y k, where k is the number of possible

treatments, is given. Let (X, T, Y ) ∼ µ, with X ∈ X as the s-dimensional feature

vector, T ≡ (T1, . . . , Tk) ∈ {0, 1}k as the treatment vector, and Y ≡ (Y1, . . . , YT ) ∈ Y k

as the vector of potential outcomes or the ITE. It is assumed that there is exactly one

non-zero component in T , denoted by η. The marginal distribution of X is µX , and

µY (x) is the conditional distribution of Y given X = x, marginalized over T .

Two assumptions are introduced about distribution µ in the Rubin-Neyman causal

model as a strong ignorability:

1. Overlap: For all x ∈ X and all i ∈ {1, . . . , k}, it holds that
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0 < P (Ti = 1|X = x) < 1. This ensures a non-zero probability of receiving any

treatment i at every point in the feature space.

2. Unconfoundedness: Conditional on X, the potential outcomes Y are

independent of T , denoted as Y ⊥ T |X. This implies no unmeasured confounding,

allowing µY (x) to be independent of T .

In an empirical study, samples of (X, T, Yη) are observed, forming the dataset

D = {(x(i), t(i), y(i)
η )}N

i=1. The observed component of the potential outcome vector,

corresponding to the assigned treatment, is called the factual outcome, and the

unobserved potential outcomes are referred to as counterfactuals. We denote the factual

outcome as yi
f , and vector of counterfactuals as yi

cf .

The goal is to draw samples from µY (x) for any x ∈ X. The performance of the

generator I(x) is measured using two metrics, depending on whether k = 2 (binary

treatments) or k > 2 (multiple treatments).

In our replication, we use k = 2 semi-simulated data called Twins to be explained

in the following chapter. Thus, we use the expected Precision in Estimation of

Heterogeneous Effects, ϵP EHE introduced in Hill (2011), given by:

ϵP EHE = Ex∼µx [(Ey∼µY (x)(y1 − y0) − Eŷ∼I(x)(ŷ1 − ŷ0))2]

Replication

We will provide the replication detail including dataset, network architectures,

training algorithm, performance metrics, and the empirical results comparing to the

results by the original paper.

Dataset

The performance evaluation of the GANITE algorithm utilizes a combination of

semi-synthetic and real-world datasets. This approach is necessitated by the inherent

difficulty in evaluating causal inference algorithms on real-world datasets, where ground



GAMITE REPLICATION 6

truth for counterfactual outcomes is typically unobservable. We select Twins, one of the

datasets employed in the original paper, which was invented in the other research paper

(Almond, Chay, and Lee (2005)). For each twin-pair we obtained 30 features relating to

the parents, the pregnancy and the birth: marital status; race; residence; number of

previous births; pregnancy risk factors; quality of care during pregnancy; and number of

gestation weeks prior to birth.

A detailed description of the Twins dataset is provided in the original paper; thus

we summarise it here. Derived from US birth records between 1989-1991, the dataset

focuses on twin births, defining the treatment t = 1 for the heavier twin and t = 0 for

the lighter twin. The primary outcome is the one-year mortality. The dataset includes

30 features related to the parents, pregnancy, and birth. Only twins weighing less than

2kg and without missing features are included, resulting in 11400 twin pairs. The

mortality rate for the lighter twin is 17.7% and for the heavier twin 16.1%. This dataset

allows for the observation of both treatment cases (heavier and lighter twin) in each

pair, providing a unique ground truth for individualized treatment effects. To simulate

an observational study, a selection bias is introduced: t|x ∼ Bern(Sigmoid(wT x + n))

where wT ∼ U((−0.1, 0.1)30×1) and n ∼ N(0, 0.1).

Performance Metrics

In the original paper, for Twin dataset, they use estimated empirical Precision in

Estimation of Heterogeneous Effect (PEHE). In cases where both factual and

counterfactual outcomes are observed but their underlying distribution is unknown, as

in the Twins dataset, they use:

ϵ̂P EHE = 1
N

N∑
i=1

[(
y

(i)
1 − y

(i)
0

)
−
(
ŷ

(i)
1 − ŷ

(i)
0

)]2
.

Additionally, they introduced average treatment effect (ATE) as another metrics

for the performance measurement. Again, since they use the Twin data where both

factual and counterfactual outcomes are observed but the underlying distribution is
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unknown, the difference ATE is defined as:

ϵ̂AT E =
(

1
N

N∑
i=1

y(i) − 1
N

N∑
i=1

ŷ(i)
)2

In our replication, we will use these two metrics to evaluate our model.

Networks

The primary goal of GANITE is to generate potential outcomes for a given feature

vector x. The lack of direct access to counterfactual outcomes necessitates an approach

to estimate these outcomes indirectly. GANITE utilizes a counterfactual generator G

and an ITE (Individualized Treatment Effect) generator I within a conditional GAN

framework to achieve this. Overall, the architecture is composed of two blocks:

counterfactual block and ITE block. Figure 1 from the original paper shows the concept

of the two networks.

Counterfactual Block. The GANITE framework utilizes generative

adversarial networks to estimate potential outcomes in scenarios where direct

observation of counterfactuals is not possible. It comprises two main blocks: the

counterfactual generator and the ITE generator, each optimized through a combination

of adversarial and supervised learning techniques.

The Counterfactual Generator G in the GANITE framework plays a pivotal role

in generating potential outcome vectors ỹ from a given feature vector x, treatment

vector t, and observed factual outcome yf . It is defined as G(x, t, yf ) = g(x, t, yf , zG),

where zG is a noise vector sampled from a uniform distribution U((−1, 1)k−1). The

function g is designed to map the input space into the potential outcome space,

simulating the distribution of counterfactual outcomes.

The Counterfactual Discriminator DG complements the generator by assessing the

realism of the generated outcomes. It receives inputs (x, ȳ) and outputs a probability

vector indicating the likelihood [0, 1] that each component of ỹ is factual. The

discriminator’s objective is to identify factual components among the generated

outcomes, thus guiding G to improve the generation of realistic counterfactuals.
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ITE Block. The ITE Generator I, on the other hand, focuses on generating

potential outcome vectors ŷ using only the feature vector x. It is mathematically

represented as I(x) = h(x, zI), where zI is a noise vector sampled from U((−1, 1)k).

The goal of I is to approximate the distribution of potential outcomes as closely as

possible, independent of the treatment vector.

The ITE Discriminator DI functions in tandem with I, evaluating the generated

potential outcomes against the complete dataset D̃. It takes a pair (x, y∗) as input and

returns a scalar value representing the probability that y∗ was drawn from the dataset

D̃ rather than being generated by I. This adversarial setup enables I to refine its

generation process, aiming to produce outcomes indistinguishable from real data.

Optimization problem and Training Algorithm

We will explain the empirical loss functions employed for optimizing the

components of the GANITE framework. The optimization process is vital for ensuring

the effective performance of the model in individualized treatment effect estimation.

The counterfactual generator G and its discriminator DG are involved in a

minimax game, formulated as:

min
G

max
DG

E(x,t,yf )∼µf
EzG∼U((−1,1)k)[tT log DG(x, ỹ) + (1 − t)T log(1 − DG(x, ỹ))]

where log is performed element-wise and T denote the transpose operator.

The empirical objective of the minimax problem for the Counterfactual Generator

G and its Discriminator DG is defined based on the equation above. The objective

function VCF for a sample x(i), t(i), ȳ(i) is given by:

VCF (x(i), t(i), ȳ(i)) = t(i)T log(DG(x(i), ȳ(i)) + (1 − t(i)T log(1 − DG(x(i), ȳ(i)))

Additionally, a supervised loss LGS is introduced to ensure the generated factual

outcome closely matches the observed factual outcome:

LG
S (y(i)

f , ỹ(i)
η ) = (y(i)

f − ỹ(i)
η )2.
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With the two objective functions, the optimization of G and DG is performed

iteratively with kG minibatches:

min
DG

− VCF (x(i), t(i), ỹi)

min
G

VCF (x(i), t(i), ỹi) − αLG
S (y(i)

f , ỹ(i)
η )

where α ≥ 0 is a hyper-parameter.

On the other hand, the ITE generator I and its discriminator DI follow a minimax

criterion similar to the counterfactual block, but with access to the complete dataset D̃:

min
I

max
DI

Ex∼µX
Ey∗∼µY (x)[log DI(x, y∗)] + Ey∗∼I(x)[log(1 − DI(x, y∗))]

After training the Counterfactual Block, the ITE Block consisting of the ITE

Generator I and its Discriminator DI is optimized. The empirical objective of the

minimax problem for I and DI is based on the equation above by using a binary cross

entropy loss:

VIT E(x(i), ȳ(i), ŷ(i)) = log(DI(x(i), ȳ(i))) + log(1 − DI(x(i), ŷ(i)).

For the optimization, supervised losses are introduced for binary treatments as:

LI
S(ȳ(i), ŷ(i)) = ((ȳ(i)

1 − ȳ
(i)
0 ) − (ŷ(i)

1 − ŷ
(i)
0 ).

With the two objective functions, the optimization of I and DI is performed with

kI minibatches:

min
DI

− VIT E(x(i), ȳ(i), ŷ(i))

min
I

VIT E(x(i), ȳ(i), ŷ(i)) + βLI
S(ȳ(i), ŷ(i))

where β ≥ 0 is a hyper-parameter.

Experiments and Results

We implemented GANITE algorithm using PyTorch. The code is on GitHub

https://github.com/YorkNishi999/ganite_pytorch. Basically, our implimentation
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is along with the algorithm provided in the original paper, except for the ITE block. In

our implementation, because the loss of the discriminator DI is included in the VIT E,

we only calculate VIT E to optimize the Inference net singly. A set of hyperparameter for

the model is defined along with the Appendix of the original paper; initialization is

Xavier Initialization for weight and Zero Initialization for bias, optimization is Adam

(Kingma and Ba (2014)), batch size is 128, depth of layers is 5, hidden state dimention

is 8, and α and β are both 2.

To compare the replicated results from GANITE, some of the estimations by

other methods described in the paper are also reproduced; least square regression using

treatment as a feature (OLS), k-nearest neighbor (k-NN), and Bayesian additive

regression trees (BART). We used the existing Python packages for the other

estimations; we utilized scikit-learn packages, while bartpy is used for the estimation of

BART. Additionally, regarding OLS and k-NN, we employed Monte Carlo method; we

randomly divided the dataset into training and test data as the ratio of 8:2 and iterated

1000 times, averaging all the results.

The table 1 shows the results. Based on the hyperparameter described in the

paper, we have almost achieved to replicate the paper. GANITE is the best model

among four to extimate in-sample metrics while it has acieved the second best for

out-sample result. Our GANITE model are trained by 5000 epochs with the same set of

hyperparameters shown in the original paper.

Extension

This section focuses on the ablation study for the extension of the original paper,

mainly to figure out the new, improved architecture to enhance the results. The

influential elements are 1) the architecture of the neural net and 2) optimization

algorithm, showing how it improves the results. Moreover, we will change the training

algorithm as all the network are optimized simultaneously.

Specifically, we propose the new architecture and training algorithm including 1)

more deeper architecture with dropout layers, 2) usage of the advanced optimization
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algorithm, and 3) simultaneous training between generator and inference net.

Architecture

The architecture of the neural net highly impacts on the results in deep learning

methodologies. In the original paper, simple multi-layer perceptron (MLP) are

employed. Therefore, we will try deeper MLP beyond the original paper such as 15 with

dropout layers that effectively enhance the results in deep architecture. Additionally,

since a deeper MLP network performs well with dropout layers, we will introduce the

layers between a MLP layer and an activation function (Srivastava, Hinton, Krizhevsky,

Sutskever, and Salakhutdinov (2014)).

Optimization Algorithm

Loshchilov and Hutter (2017) proposed the advanced optimization algorithm

named AdamW, which is improved from Adam that is used in the original paper.

AdamW modifies from Adam the way weight decay is integrated into the

optimization process. Instead of incorporating weight decay into the parameter updates

as in Adam, AdamW decouples the weight decay from the optimization steps. This

allows for a more consistent and effective application of weight decay, as it is applied

directly to the weights and independent of the adaptive learning rate adjustments,

leading to improved training stability and performance.

Training Algorithm

Larsen, Sønderby, Larochelle, and Winther (2016) introduced the method

combining GAN with VAE (Variational Auto Encoder), mixing training algorithm GAN

and VAE simultaneously. Inspired by the algorithm, we will train

Generator/Discriminator in the counterfacctual block and Inference Net in the ITE

block in the same epoch, not sequentially.
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Results

Table 2 shows the ablation study and final results. It shows the results from five

models: 1) original, 2) the model with AdamW and 5-depth layer, 3) the model with

drop out layers, Adam, and 5-depth layer, 4) the model with AdamW, 15-depth layer,

and simultaneous algorithm, and 5) the model with AdamW, dropout layers, 15-depth

layer, and simultaneous algorithm. In terms of the most important metric, PEHE with

‘Out-sample’ (test data), the fifth model achieved the best score, which is equal to the

original paper result as the point estimation, and better than it as the standard error.

Discussion

The results from our reproductive experiments by Table 1, highlight the enhanced

performance of the GANITE model over traditional methods like OLS, k-NN, and

BART. Notably, the GANITE model demonstrated superior precision in the estimation

of heterogeneous effects (ϵ̂P EHE) using in-sample data, which is compatible with the

original paper. The extensions introduced, as detailed in comparison with Table 2,

including deeper architecture, advanced optimization algorithms, and simultaneous

training, improved ϵ̂P EHE using out-sample data. These improvements underscore the

potential of advanced computational techniques in enhancing predictive accuracy.

The usage of real-world data in applications is one of the challenges to be

overcome for the broader employment of GANITE. Twin data is critical to generate

counterfactuals through simulation. The training of GANITE heavily relies on

supervised learning based on this generated data. Therefore, to use the algorithm for

the actual verification of causal effects, it is necessary to construct a simulation

algorithm that can produce convincing counterfactuals. Consequently, it may take time

to replace parametric models that estimate models directly from data.

Also, we have not achieved a significant improvement, suggesting the need for

further research to optimize model performance by different architectures or training

algorithms to improve the GANITE model.
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Table 1

Comparison of the results among models

Method

√
ϵ̂P EHE ϵ̂AT E

In-sample Out-sample In-sample Out-sample

GANITE .315 ± .006 .333 ± .013 .016 ± .006 .014 ± .014

OLS .341 ± .005 .341 ± .007 .005 ± .004 .007 ± .006

k-NN .319 ± .001 .319 ± .006 .016 ± .001 .016 ± .006

BART .341 ± .006 .348 ± .012 .002 ± .006 .009 ± .013

Original GANITE .289 ± .005 .297 ± .016 .016 ± .006 .009 ± .001

Original OLS .319 ± .001 .318 ± .007 .004 ± .003 .007 ± .006

Original k-NN .333 ± .001 .345 ± .007 .003 ± .002 .005 ± .004

Original BART .347 ± .009 .338 ± .016 .121 ± .024 .127 ± .023

Note that bold is the best estimator within our experiments in each column.
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Table 2

Comparison of the results for ablation study

GANITE

√
ϵ̂P EHE ϵ̂AT E

In-sample Out-sample In-sample Out-sample

Original .315 ± .006 .333 ± .013 .016 ± .006 .014 ± .014

AdamW .332 ± .006 .330 ± .012 .010 ± .007 .001 ± .013

Dropput .382 ± .006 .382 ± .012 .011 ± .007 .016 ± .013

Deep/AW/SL .321 ± .006 .315 ± .012 .014 ± .007 .021 ± .013

Deep/DP/AW/SL .326 ± .006 .297 ± .012 .016 ± .007 .010 ± .012

Original GANITE .289 ± .005 .297 ± .016 .016 ± .006 .009 ± .001

Note that bold is the best estimator in each column.
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Figure 1 . Block Diagram of GANITE from the original paper (Yoon et al. (2018))


