
Emotion-related Data Analysis by Large Language Model with Contrastive
Learning

Yohei Nishimura
University of Wisconsin-Madison
ynishimura@wisc.edu

Amy Koike
University of Wisconsin-Madison

ekoike@wisc.edu

Abstract

Large language models such as ChatGPT have
the potential to streamline marketing work-
flows. However, since these models are
trained on public datasets, there is a possibil-
ity that they may not perform well in handling
marketing-related tasks with zero-shot infer-
ence. This research investigates the capability
of large language models with zero-shot and
fine-tuning for marketing-related tasks using
representative models such as T5. Additionally,
we introduce a contrastive learning algorithm to
enhance the model performance for marketing-
oriented binary and multi-labeled text classifi-
cation. We show that contrastive learning im-
proves performance by training to model the
relationship among each label in embedding
space.

1 Introduction

Natural Language Processing (NLP) has been a
powerful tool for marketing experts and researchers
in the marketing field. Because NLP allows them
to analyze large amounts of text data, such as cus-
tomers’ feedback, social media posts, and online
reviews, they can identify customers’ perceptions
of products, key topics, sentiments, and trends. For
example, sentiment analysis, which is one of the
major NLP tasks, can be used for interpreting cus-
tomers’ feedback and opinions about products and
services to improve marketing strategies. As an-
other example, chatbots can engage with customers
by answering their questions and providing support.
Several business-to-business services already offer
NLP as a business solution (e.g., Salesforce Mar-
keting Cloud, Amazon Comprehend, Brandwatch,
Clarabridge, and MonkeyLearn).

We believe large language models (LLMs), such
as ChatGPT (OpenAI, November 2022), accelerate
the use of NLP for those marketing-related tasks;
they are designed to handle unstructured data in
a flexible manner. Unlike traditional rule-based

or statistical methods, which relies on handcrafted
features or pre-defined rules, LLMs can learn to
extract features and relationships directly from the
data. Moreover, advances in computer resources
and dataset practices make language models more
accessible. It should facilitate marketers and re-
searchers to handle enormous amounts of unstruc-
tured practical data they have collected.

However, marketers might not apply LLMs
trained by public datasets to their tasks; (Kocoń
et al., 2023) warned that the capability of zero-
shot inference by ChatGPT is limited for human-
emotion-related tasks suchas sentiment analysis
and emotion recognition. Time-consuming mar-
keting tasks such as design of visual creatives or
text copies, which marketers hope to automate, are
highly related to customers’ insight. Therefore, the
zero-shot application of LLMs to marketing tasks
could cause undesirable results.

In this research, our questions are 1) "can LLMs
be used for ’marketing-related’ tasks without fine-
tuning?", and 2) "how can we fine-tune to improve
the capability of solving ’emotion-related’ tasks
by LLMs?". Regarding the first question, we will
test multiple classification tasks in marketing with
zero-shot/finetuned LLMs. Additionally, we will
introduce an algorithm with contrastive learning to
enhance the trained models with the relationship
between each emotion.

Specifically, we will use the T5 (Raffel et al.,
2020) as a representative of LLMs since T5 is af-
fordable and designed to perform a wide range of
tasks. It can be fine-tuned without cost and small
size but efficient results.

In the remainder of this paper, we will outline
relevant works and describe our model architecture.
Then, we will present the experiment procedure
and implementation detail. Finally, we will show
the results compared with the benchmark and the
next tasks to finalize our project.



2 Related Work

2.1 Marketing with NLP
Several marketing researchers have utilized NLP
in their work; NLP has been used for classification
tasks and text analysis such as sentiment analysis
and empathy classification in marketing tasks in a
marketing research field. For example, Pamuksuz
et al. (2021) utilized RoBERTa (Liu et al., 2019)
for automated measurement of brand personality
from social media was proposed. Lin et al. (2020)
performed Latent Dirichlet Allocation (LDA) (Blei
et al., 2003) for topic analysis to produce candidate
words that can be marked as marketing 4C-related
characteristic keywords in consumers’ comments
on social networks. Chakraborty et al. (2022) uti-
lized a Long Short-Term Memory (Hochreiter and
Schmidhuber, 1997) network to address the chal-
lenge of obtaining attribute-level sentiment ratings
from online text reviews.

2.2 Language models
Language models, which are founded on their
probability distribution of sequences of words or
phrases, have been used NLP tasks such as speech
recognition, machine translation, text generation,
or sentiment analysis (Li et al., 2021; Naseem et al.,
2021). Many different types of language models
have been introduced over a few decades. An early
example of a language model is the n-gram model,
which predicts the probability of a word based on
the previous words in the sequence. Although n-
gram models are simple and effective, they have
limitations in capturing long-term dependencies
between words.

One key component of many modern language
models is attention mechanism, a technique that
allows the model to focus on different parts of the
input text when generating its output (Hu, 2020).
Transformer that utilizes the attention mechanisms
achieved significant results in various tasks, and it
has since become one of the most widely used NLP
models (Vaswani et al., 2017). The transformer ar-
chitecture has mainly two stacks; one is an encoder
that takes a sequence of input tokens and produces
a sequence of hidden states, and the other is a de-
coder that takes the encoder output and produces a
sequence of output tokens.

Since the introduction of Transformer, many
NLP researchers have used the transformer as a
base architecture and attained powerful results.
One of the influential examples is BERT (Bidirec-

tional Encoder Representations from Transform-
ers), which is a bidirectional transformer-based
architecture pre-trained with a combination of
masked language modeling and next-sentence pre-
diction (Devlin et al., 2019). The uniqueness of
BERT is its use of a bidirectional transformer en-
coder. This allows BERT to take into account the
context of a word in both directions.

In addition to the advent of BERT, text-to-text
language models are also spotlighted by their flexi-
bility in a variety of NLP tasks. ChatGPT, a dialog
system based on the GPT-series (Radford et al.,
2018a, 2019; Brown et al., 2020), amazed a wide
variety of people with its intelligence. The first
GPT model (often called “GPT-1”) consists of a
series of transformer decoder layers trained to pre-
dict the next word in a sequence as pre-training
(Radford et al., 2018b). As another example of
text-to-text language models, T5 is designed as
a text-to-text model, making itself a highly flexi-
ble model that can be applied to a wide range of
NLP tasks (Raffel et al., 2020). T5 model uses a
bidirectional encoder-decoder architecture, which
allows the model to encode the input sequence and
generate the output sequence in a single pass.

2.3 Contrastive learning
In order to further improve the performance of our
models, we will introduce a contrastive learning
algorithm. Originally proposed as a method for
computer vision in (Chen et al., 2020), contrastive
learning recognizes argumented images as ’posi-
tive’ pairs with the original one, and other pairs as
’negative’ ones, controlling the distance between
positive pairs as close ones, and between negative
pairs apart in the embedding space. To apply this
method to natural language processing tasks, (Gao
et al., 2022) demonstrated that pretraining with con-
trastive learning using natural language inference
(NLI) datasets can improve the classification per-
formance of encoder-based models such as BERT
and RoBERTa. While (Gao et al., 2022) proposes
both unsupervised and supervised methods, we will
employ a supervised learning approach in this pa-
per.

3 Experiments

3.1 Model/Method
T5 In this study, we used T5 (text-to-text Transfer
Transformer) to see the potential use for the market-
ing field (Raffel et al., 2020). T5 is a Transformer-



Dataset Classes Average length Max length Train/Val samples Test samples

IMDb 2 292 3,045 25,000 25,000
Empathy dataset 2 170 322 1,002 103

GoEmotions 28 68 703 48,836 5,426

Table 1: Statistics of three text classification datasets.

Tweet Empathy

@bigbobftworth54 Hello, Robert. We’d like to learn more about your experience.
At your convenience, could you please DM us with your best contact information

0

We pride ourselves on making innovative vehicles, and we are thrilled to hear you’re
enjoying all that your LEAF has to offer! Thanks for kicking gas with us.

1

Table 2: Examples of Empathy dataset.

based architecture that solves various NLP tasks
(i.e., translation, summarization, or even classifica-
tion) by text-to-text approach.

T5 has an encoder-decoder structure that closely
follows the original Transformer (Vaswani et al.,
2017). First, the input is tokenized into a sequence
of tokens and then passed through an embedding
layer to create an input representation with posi-
tional information. Then, the input representation
is provided to the encoder. The encoder is lay-
ered with multi-head self-attention, followed by
a feedforward network. The encoder encodes the
input into a set of hidden representations that cap-
ture the relevant information in the input. Next,
the representations are given to the decoder. The
decoder has similarly structured layers as the en-
coder, which consists of multi-head self-attention,
followed by a feedforward network. After the de-
coder takes the hidden representation from the en-
coder, it generates a sequence of output tokens. The
output sequence generated is then passed through a
final linear layer and softmax activation to produce
a probability distribution over the possible output
tokens, generating sentences with beam search over
the possible sequence. The differences from the
original transformer are that T5 removes the Layer
Norm bias, places the layer normalization outside
the residual path, and uses a different position em-
bedding scheme.

Regarding tokenizer, T5 utilizes SentencePiece
(Kudo and Richardson, 2018) to encode text as
WordPiece tokens (Sennrich et al., 2016), using
a vocabulary of 32,000-word pieces during pre-
training.

To investigate the capability of LLMs in

marketing-related classification tasks with zero-
shot and fine-tuning, we conducted three types of
experiments using T5: 1) binary sentiment classifi-
cation based on a public dataset for sentiment anal-
ysis, 2) binary empathy classification based on our
collected data, and 3) multi-labeled classification
based on a public dataset. Since the classification
tasks for the same public datasets were conducted
with BERT(Alaparthi and Mishra, 2021), (Dem-
szky et al., 2020), we evaluate the performance
compared with BERT’s results as benchmarks for
all experiments.

Contrastive learning We used two types of
what is a ’positive’ pair in a contrastive learning al-
gorithm. First of all, based on (Khosla et al., 2021),
texts with the same labels are all positive samples,
and those with different labels are negative ones.
Second, we expanded ’positive’ samples from the
same label to similar labels; the similarity stems
from between emotions. For instance, a pair of joy
and amusement can be considered similar to each
other, but sadness should be different from joy. We
leveraged the emotional relationship in our algo-
rithm to formulate a more optimized embedding
space. We call the similar relationship between
emotions ’soft positive’ or ’continuous positive’
dependent on the weights for each label.

Additionally, we adopted two approaches to in-
troduce a contrastive learning algorithm. The first
was to calculate a contrastive loss and train the en-
coder “during fine-tuning of T5 simultaneously”.
The second was to install this algorithm “as an ad-
ditional pre-training step” for an encoder prior to
fine-tuning. We referred the former approach as
Model 1, 2, 3, and 7, and the latter as Model 4, 5,



6, and 8 in Table 5.

3.2 Dataset
We evaluated our approaches on three datasets:
IMDb dataset (Maas et al., 2011), private empa-
thy dataset of individuals’ tweets, called ‘empathy
dataset,’ and GoEmotions dataset (Demszky et al.,
2020). We show the summary for each dataset in
Table 1.

IMDb dataset The IMDb dataset contains 50K
movie reviews along with binary sentiment labels:
positive and negative. The overall distribution of
labels is balanced (25K positive and 25K negative).
The 50K reviews are split evenly into a set of 25K
reviews for training and a set of 25K reviews for
testing.

Empathy dataset This dataset was collected
by randomly collecting 1,113 tweets from brand
and company accounts. The data was annotated
by crowd workers who assessed each tweet and
assigned a value of 1 if they think it contained em-
pathy and 0 if not. The ratio of positive to negative
annotations was 432 to 681. To maintain this ratio,
the data set was randomly divided into training,
validation, and test data sets in an 8:1:1 proportion.
Examples are shown in Table 2.

GoEmotions This dataset is composed of 58K
English comments curated from Reddit, labeled for
one or more of 27 emotion(s) plus ’neutral.’ For
example, the emotion categories include happiness,
sadness, anger, fear, and surprise. Each comment
was manually labeled by three raters, and most of
them (83%) have a single emotion label.

The GoEmotion dataset includes the top-level
concepts of ’positive,’ ’negative,’ and ’ambiguous’
for each emotional label except for ’neutral.’ Table
3 and 4 shows all emotional labels and their top-
level concepts, and basic statistics of the dataset.
We utilized these three concepts of ’positive,’ ’neg-
ative,’ and ’ambiguous’ to measure the similarity
between emotional labels that will be described
later. Since ’neutral’ does not have a top-level con-
cept, we assumed that there are no emotional labels
similar to ’neutral’ except for ’neutral’ itself.

3.3 Evaluation metrics
We evaluated our experimental performances by the
precision, recall, F1 score, and accuracy (Forman
et al., 2003). We used F1 as the most important
score since some of our dataset have biases in the
numebr of each label.

Label /
Category

Train/
Val

Test Total %

Positive 19,170 2,301 21,471 37.4
Negative 11,985 1,518 13,503 23.5
Ambiguous 5,729 723 6,452 11.2
Neutral 14,219 1,787 16,006 27.9

Total 51,103 6,329 57,432 100.0

Table 3: Basic statistics of GoEmotion dataset. Text
data categorized in positive are larger than the rest of
the two. Breakdowns for each emotion are found in
Table 4

Accuracy It is the total number of samples classi-
fied as target classes, calculated by TP+FP

N(total samples) ,
where TP represents “true positive,” N(ŷ = 1|y =
1), whereas FP represents “false positive,” N(ŷ =
0|y = 0).

F1, precision, and recall F1 score is the har-
monic mean of the precision (P) and recall (R),
which is a popular performance measure for clas-
sification. In the third experiment, which encom-
passes multi-classes, we use a macro-averaged F1
score to compare with benchmarks. The metrics
are calculated by the equations 1. Here, FN repre-
sents “false negative,” N(ŷ = 1|y = 0)

P =
TP

TP + FP
, R =

TP

TP + FN

F1 =
2

P−1 +R−1

(1)

3.4 Contrastive learning
We applied contrastive learning to multi-labeled
GoEmotion dataset, the most challenging dataset
among our three datasets. While NLI datasets in-
cluding two text (‘text’ and ‘hypothesis’) were used
to compute cosine similarities based on the positive
pair in the original paper (Gao et al., 2022), GoE-
motion dataset includes of 1) ‘Text’ (sentence), and
2) ‘Emotion’ (label). Therefore, we built our loss
functions based on (Khosla et al., 2021), as shown
in Equation 2 in both an additional pre-training and
a simultaneous fine-tuning.

Lsup
cl = −

∑
i∈I

1

|P (i)|∑
p∈P (i)

log
exp (zi · zp/τ)∑

a∈A(i) exp (zi · za/τ)

(2)



Label /
Category

Train/
Val

Test Total %

Positive
admiration 4,130 504 4,634 8.1
amusement 2,328 264 2,592 4.5
approval 2,939 351 3,290 5.7
caring 1,087 135 1,222 2.1
desire 641 83 724 1.3
excitement 853 103 956 1.7
gratitude 2,662 352 3,014 5.2
joy 1,452 161 1,613 2.8
love 2,086 238 2,324 4.0
optimism 1,581 186 1,767 3.1
pride 111 16 127 0.2
relief 153 11 164 0.3

Negative
anger 1,567 198 1,765 3.1
annoyance 2,470 320 2,790 4.9
disappointment 1,269 151 1,420 2.5
disapproval 2,022 267 2,289 4.0
disgust 793 123 916 1.6
embarrassment 303 37 340 0.6
fear 596 78 674 1.2
grief 77 6 83 0.1
nervousness 164 23 187 0.3
remorse 545 56 601 1.0
sadness 1,326 156 1,482 2.6

Ambiguous
confusion 1,368 153 1,521 2.6
curiosity 2,191 284 2,475 4.3
realization 1,110 145 1,255 2.2
surprise 1,060 141 1,201 2.1

Neutral
14,219 1,787 16,006 27.9

Total 51,103 6,329 57,432 100.0

Table 4: Breakdowns for GoEmotion dataset. Regard-
ing each emotion, ‘admiration’ is the largest excluding
‘neutral’, and ‘grief’ is the smallest.

Here, i ∈ {1, . . . I}, P (i) means the set of the
same or similar samples as text i, and A(i) does all
the text data. This loss was used in Model 1 and 4
in fine-tuning.

For our second type of supervised contrastive
learning algorithms introducing ‘soft positive’, we
used a ‘threshold’ ∈ (0, 1) such as 0.5, one of key
hyperparameters, and calculated the cosine similar-
ity of the similar emotions in the numerator in the

Calc for pos pair Approximation loss for
Contrastive learningPre-training Fine-tuning

Model 1
-

Equation 2

Equation 5

Model 2 Equation 3

Model 3 Equation 4

Model 4
Equation 3

Equation 2

Model 5 Equation 3

Model 6 Equation 4

Model 7 -
Equation 4 Equation 6

Model 8 Equation 3

Table 5: Comparisons among eight models in our exper-
iments.

loss function weighted by the threshold. The loss
function is shown in Equation 3.

Lsup
spos = −

∑
i∈I

1

|P (i)|
∑

p∈P (i), s∈S(i)

log
exp (zi · zp/τ) + ω exp (zi · zs/τ)∑

a∈A(i) exp (zi · za/τ)
(3)

Here, ω means a threshold for soft positive data,
S(i) includes soft positive data of data i. This
loss was used in Model 2 and 5 in fine-tuning and
pre-training.

Additionally, we implemented the third type of
contrastive learning algorithms with the positive
labels named ‘continuous positive.’

Lsup
cpos = −

∑
i∈I

1

|P (i)|
∑

p∈P (i), s∈S(i)

log
exp (zi · zp/τ) + ωi,s exp (zi · zs/τ)∑

a∈A(i) exp (zi · za/τ)

Ω = {ωi,j |i, j ∈ L}
(4)

where, L means the set of labels {0, 1, . . . , 28},
and ωi,j means that the weights representative the
similarity between labels li and lj , calculated by
embedding vectors from the RoBERTa fine-tuned
by GoEmotion dataset. This loss was used in
Model 3 and 6, 7 and 8 in fine-tuning.

We experimented eight models with contrastive
learning algorithms including soft positive and con-
tinuous positive. Our models are summarized in
Table 5.



3.5 Implementation
We used T5 with zero-shot and fine-tuning to solve
three-dataset-usage text classification tasks. How-
ever, T5 is a text-to-text language model and does
not have a downstream head for classification.
Therefore, we implemented special codes to solve
classification tasks.

3.5.1 Binary classification
Our binary classification code using IMDb
dataset is mainly based on the code in https:
//colab.research.google.com/
github/patil-suraj/exploring-T5/
blob/master/t5_fine_tuning.ipynb.
We conducted an additional implementation of
the code for 1) zero-shot inference for binary
classification, 2) zero-shot inference and fine-
tuning the model for multi-label classification
tasks, and 3) computation of metrics for binary
classification and multi-label test data for the
reimplementation’s requirement; since we used
the scikit-learn package to compute the metrics,
we processed the data accordingly to fit this
implementation.

Additionally, we implemented the code to fine-
tune BERT as our benchmark for IMDb and Empa-
thy datasets. In both cases, the base BERT models
are uncased with a training epoch of 10, a max
length of 256, and a batch size of 8. Both codes are
included in our repository.

Fine-tuning We converted target data (numeri-
cal values) to the corresponding text (e.g., ‘positive’
in a binary classification or ‘amusement’ in a multi-
labeled classification) to train/test the model. This
implementation method is inspired by the training
method for SST2 (Stanford Sentiment Treebank v2)
introduced in Appendix D.7 (Raffel et al., 2020).

Furthermore, we inserted a specific task name
(e.g., EmpathyClassification) as a prefix, followed
by a comma and a space. Then we concatenated
the text data to be classified and the word corre-
sponding to the target of the data (e.g., “negative”
for 0), wrapped up by “</s>”.

During fine-tuning, we use the prefix and input
text for training and train the model with respect to
the target text converted from class numbers. The
model was trained for 10 epochs.

3.5.2 Multi-classification
Some of the labels in GoEmotions are rep-
resented by multiple token IDs for a single
word; for example, ‘disapproval’ corresponds to

[1028, 12497, 2165]. Therefore, the original code
cannot handle these labels. In our implementation,
we converted the numerical targets in the dataset
to their corresponding words (e.g. target 10 into
‘disapproval’), then mapped them to their token IDs
with “<EOS>(</s>)” token by T5 tokenizer. Then
the model reads them up to the “</s>”. We de-
termined the maximum length of the target words
based on the maximum length of words in the batch,
and masked any tokens shorter than this length with
“<PAD>”. This implementation resolved the issue
of emotion labels having various token lengths.

3.5.3 Zero-shot inference
We implemented the code to explore the T5’s esti-
mation capability of empathy or emotion classifica-
tion with zero-shot. In order to make the T5 base
model perform the tasks of binary and multival-
ued classification with zero-shot, it is necessary to
limit the logits in the model’s output; since T5 does
not have a head for classification, it may output
answers other than ‘binary’ or ‘multivalued’ if the
user generates ‘meaningless’ answers without any
constraints.

To avoid meaningless generation, we had pre-
selected the positions of the logits that correspond
to the answers of the classification; for instance, for
positive 1465 and for negative 2841 for binary clas-
sification. Within this limited number of answers,
the scores are compared, and the word that takes
the maximum value is taken as the answer.

Additionally, as written above, some labels in
GoEmotions are composed of a few token ids,
as the vector of [3, 60, 2528, 7, 15] represents ‘re-
morse.’ The calculation of the probability of ‘re-
morse’ results from 1) taking a softmax of logits
for 256 words, 2) taking the numbers representing
specific words, and 3) multiplying them to provide
the probability of the words.

3.5.4 Contrastive learning
To keep our implementation efficient, we utilized
the approximation methods in calculating Equation
2 or 3, which enables us to conduct a matrix-based
implementation in PyTorch.

Lsup ≈ −(S ⊙ S∗ ⊙M − S ⊙ (1 − S∗)⊙M)
(5)

Here, {si,j} in S means the cosine similarity be-
tween ith and jth data, and {s∗i,j} in S∗ is 1 if the
label of ith and jth data are the same, the value of

https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb
https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb
https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb
https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/t5_fine_tuning.ipynb


Dataset Architecture Model F1 Precision Recall Accuracy

IMDb
T5

Zero-Shot 0.42 0.42 0.43 0.43

Fine-tuned 0.95 0.95 0.95 0.93

BERT Benchmark 0.95 0.95 0.95 0.93

Empathy
T5

Zero-Shot 0.37 0.30 0.49 0.59

Fine-tuned 0.84 0.86 0.83 0.78

BERT Benchmark 0.84 0.85 0.83 0.78

GoEmotion

T5
Zero-Shot 0.02 0.91 0.04 0.28

Fine-tuned 0.49 0.59 0.44 0.64

BERT Benchmark 0.49 0.59 0.44 0.64

T5

Model 1 0.50 0.62 0.45 0.53

Model 2 0.52 0.58 0.48 0.51

Model 3 0.52 0.57 0.48 0.51

Model 4 0.48 0.57 0.44 0.52

Model 5 0.49 0.57 0.46 0.52

Model 6 0.49 0.60 0.45 0.52

Model 7 0.50 0.57 0.46 0.51

Model 8 0.51 0.59 0.47 0.53

Table 6: Results from all models and dataset. Bold means the best score(s) in each dataset.

the threshold if the label of ith and jth data are in
the same group (they are soft positive each other),
and 0 otherwise. M denotes the mask, which is a
upper triangular matrix where all values are 1 in the
upper side and others are zero including diagonal
components. If we calculate the loss with soft posi-
tive, S∗ has the threshold values on {s∗i,j} if ith and
jth data are in the same group. This approximated
loss calculation is used in from Model 1 to Model
6.

Additionally, for continuous positive pairs, we
introduced L1 loss defined by Equation 6. This
approximated loss calculation is implemented in
Model 7 and 8.

Lsup
L1 ≈ |S ⊙ S∗ ⊙M − S ⊙ (1 − S∗)⊙M)|

(6)

3.6 Hyperparameters
We use the T5 model (Raffel et al., 2020) with a
hidden size of 768, 12 multi-head self-attention,
and 12 Transformer blocks (Vaswani et al., 2017)
in both the encoder and the decoder.

To train the model, we used one RTX3090 and
set the batch size to 8 for fine-tuning with a max
sequence length of 256 and training epoch of the
range from 7 to 10, whereas the batch size is 32 for
validation and testing in each dataset. The thresh-
old for soft positive contrastive loss is 0.5.

Our optimization method for fine-tuning was
AdamW (Loshchilov and Hutter, 2019) with a
learning rate of the range from 1e-4 to 5e-5 corre-
sponding to the models and weight decay of 0.0.

4 Results

We show our results in Table 6 and 7. The bench-
mark scores of fine-tuning BERT for IMDb and
Empathy are conducted by our code in the repos-
itory. The scores for GoEmotions by fine-tuned
BERT are introduced in the paper by Demszky
et al.. The results of our implementation perform
as well as or better than benchmark scores.

Regarding furture improvement of GoEmotion-
related models, as shown in Table 7, the model after
fine-tuning improved the baseline model by 3.0%
on each dataset. The fine-tuning algorithm with



simple contrastive learning (Model 1) improved the
results of the baseline model using the GoEmotion
dataset by 4%, while the results of the plain fine-
tuning model by 3%.

Additionally, the algorithm using contrastive
learning with soft positive (Model 2) and with con-
tinuous positive (Model 3) improved the results of
the model trained with simple Pos/Neg Contrastive
learning by 2%.

On the other hand, the performance of the mod-
els with pretraining (Model 4, 5, 6) by contrastive
learning exceeded baseline, but they did not en-
hance the results of simultaneous training by con-
trastive learning. The L1 loss improved the models
by 1-2% compared to the simple fine-tuned model.

Regarding individual emotion labels, on aver-
age, the model with simultaneous contrastive learn-
ing fine-tuning of soft positive worked best; other
models performed better in some emotions such
as ‘amusement’ and ‘surprise’ by the model with
simultaneous contrastive learning fine-tuning of
simple pos/neg, or the additional pre-trained model
estimated ‘admiration,’ ‘excitement,’ or ‘gratitude’
better.

Interestingly, the models with simultaneous con-
trastive learning fine-tuning were able to estimate
the label of ‘grief,’ whie benchimark, simple fine-
tuned, and pretrained models did not. All models
almost precisely estimated the label of ‘gratitude,’
which is one of the explicit emotion in the sentence.

5 Conclusion

In this paper, we addressed the questions of 1) "can
LLMs be used for ’marketing-related’ tasks with-
out fine-tuning?", and 2) "how can we fine-tune to
improve the capability of solving ’emotion-related’
tasks by LLMs?" using emotion-related datasets.
By adding contrastive learning to train the encoder,
we were able to transfer the relationship between
emotions well into the embedding space and create
a model that performs by around 3-5 % better than
simple fine-tuning.

6 Contribution of each member

6.1 Yohei
Whole architecture design; implementation of all
codes; writing Experiments, Implementation, Re-
sults, and Conclusion and tables.

6.2 Amy
Implemented the test codes; wrote Introduction,
Related Work, Model.

References
Shivaji Alaparthi and Manit Mishra. 2021. BERT: a

sentiment analysis odyssey. Journal of Marketing
Analytics, 9(2):118–126.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan):993–1022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Ishita Chakraborty, Minkyung Kim, and K Sudhir. 2022.
Attribute sentiment scoring with online text reviews:
Accounting for language structure and missing at-
tributes. Journal of Marketing Research, 59(3):600–
622.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations.

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo
Ko, Alan Cowen, Gaurav Nemade, and Sujith Ravi.
2020. Goemotions: A dataset of fine-grained emo-
tions.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

George Forman et al. 2003. An extensive empirical
study of feature selection metrics for text classifica-
tion. J. Mach. Learn. Res., 3(Mar):1289–1305.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2022.
Simcse: Simple contrastive learning of sentence em-
beddings.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Dichao Hu. 2020. An introductory survey on attention
mechanisms in nlp problems. In Intelligent Systems
and Applications: Proceedings of the 2019 Intelligent
Systems Conference (IntelliSys) Volume 2, pages 432–
448. Springer.

https://doi.org/10.1057/s41270-021-00109-8
https://doi.org/10.1057/s41270-021-00109-8
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2005.00547
http://arxiv.org/abs/2005.00547
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821


F1

Benchmark Fine-tuned Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

admiration 0.65 0.68 0.67 0.66 0.67 0.69 0.67 0.66 0.66 0.67
amusement 0.80 0.80 0.82 0.79 0.77 0.78 0.79 0.78 0.78 0.79
anger 0.47 0.47 0.46 0.48 0.52 0.48 0.50 0.51 0.48 0.48
annoyance 0.34 0.26 0.26 0.34 0.33 0.27 0.24 0.27 0.31 0.29
approval 0.36 0.42 0.39 0.37 0.42 0.40 0.42 0.42 0.41 0.41
caring 0.39 0.48 0.43 0.39 0.41 0.47 0.45 0.42 0.39 0.45
confusion 0.37 0.44 0.42 0.43 0.43 0.38 0.43 0.44 0.41 0.43
curiosity 0.54 0.50 0.49 0.47 0.49 0.43 0.54 0.49 0.47 0.51
desire 0.49 0.44 0.48 0.49 0.49 0.53 0.55 0.53 0.50 0.58
disappointment 0.28 0.31 0.28 0.32 0.29 0.32 0.31 0.32 0.33 0.37
disapproval 0.39 0.41 0.37 0.40 0.42 0.43 0.40 0.42 0.43 0.42
disgust 0.45 0.47 0.46 0.48 0.45 0.45 0.47 0.50 0.44 0.52
embarrassment 0.43 0.54 0.53 0.47 0.48 0.54 0.51 0.51 0.48 0.44
excitement 0.34 0.40 0.39 0.38 0.40 0.40 0.40 0.38 0.40 0.41
fear 0.60 0.68 0.69 0.67 0.68 0.69 0.71 0.68 0.69 0.69
gratitude 0.86 0.91 0.88 0.89 0.89 0.91 0.91 0.91 0.89 0.92
grief 0.00 0.00 0.22 0.53 0.55 0.00 0.00 0.00 0.33 0.25
joy 0.51 0.58 0.59 0.57 0.58 0.59 0.58 0.58 0.56 0.59
love 0.78 0.79 0.81 0.80 0.81 0.78 0.81 0.80 0.79 0.81
nervousness 0.35 0.34 0.41 0.39 0.43 0.46 0.39 0.36 0.45 0.45
optimism 0.68 0.55 0.48 0.56 0.55 0.56 0.53 0.52 0.54 0.52
pride 0.51 0.30 0.45 0.45 0.56 0.11 0.19 0.20 0.11 0.30
realization 0.36 0.18 0.24 0.25 0.22 0.20 0.19 0.20 0.22 0.19
relief 0.21 0.50 0.40 0.50 0.35 0.44 0.44 0.40 0.50 0.44
remorse 0.15 0.58 0.59 0.67 0.61 0.57 0.66 0.63 0.61 0.59
sadness 0.66 0.53 0.52 0.56 0.51 0.54 0.52 0.54 0.57 0.54
surprise 0.49 0.51 0.59 0.56 0.54 0.52 0.54 0.52 0.56 0.53
neutral 0.50 0.67 0.67 0.63 0.64 0.66 0.65 0.66 0.64 0.66

Average (macro) 0.46 0.49 0.50 0.52 0.52 0.48 0.49 0.49 0.50 0.51

Table 7: Results of each emotion from all models in GoEmotion dataset. Bold means the highest score per row, and
underline means the highest per column.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2021. Super-
vised contrastive learning.
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