
Ad Recommender System Analysis by the Multi-Armed Bandit Problem

Yohei Nishimura
ynishimura@wisc.edu

1. Introduction

Ad recommendation systems implement intriguing algo-
rithms as practical tools and research subjects. In particu-
lar, the development and spread of the Internet have made it
simple for companies and individuals to publish their con-
tent and, sometimes, sell their products. As a result, peo-
ple are exposed to information overload, a volume of infor-
mation they could not process in a lifetime. Furthermore,
users encounter an immense of advertisements on the In-
ternet. Because Internet advertisements cost less than other
channels’ ads, companies display thousands of promotions.
In terms of a media, a supply side of the advertisement, it is
essential to exhibit the ads to draw users’ attention to maxi-
mize revenues.

For online promotion to be effective, companies have re-
lied on targeting techniques on the users’ information such
as the historical data of browsing, shopping, or posting;
however, users have become afraid of invading their pri-
vacy [Langheinrich et al., 1999]. Therefore, the research
has been developed based on the users’ feedback which
does not require privacy information. Researchers have re-
searched ad recommendation systems based on reinforce-
ment learning algorithms in multi-armed bandit (MAB)
problems [Scott, 2010] since there is a high affinity between
the MAB setup and the online ad recommendation system.
An advertiser seeks to maximize the number of clicks on a
website by choosing the most effective ads, and each ad has
a theoretical Click-Through Rate (CTR) that is unknown
and assumed to not change over time. The advertiser’s goal
is to maximize the number of clicks over time, which is
similar to a typical MAB problem.

This research project aims to discover and implement an
agent’s algorithm that goes beyond baselines: a random al-
gorithm and an ϵ-greedy algorithm. We implement ad rec-
ommender agents using MAB problem setup with a simu-
lated advertisement server environment. This goal can con-
tribute to the explicit comparison of ad recommendation al-
gorithms in the simplified simulated environment.

For the implementation, our code is open in the GitHub.
Follow the instruction on README.md, and build the re-
quired environment. Note that some packages have a de-
pendency on the Operating System: Ubuntu. We confirm

the availability of Ubuntu 20.04 and 18.04. We recommend
the same OS environment as ours.

2. Literature Review
2.1. Multi-Armed Bandit problem for ad recom-

mender systems

[Slivkins, 2019] refers to ad selection as one represen-
tative of the multi-armed bandit (MAB) problems. In the
problem, the agent observes whether the displayed ad is
clicked; if it is clicked, the agent obtains the reward whose
amount is one, while the agent does not gain the reward
without clicking. The probability of the click on each ad
does not change over time. We inherit the setting to our
experiment in the gym-adserver [Falossi, 2021].

2.2. Algorithms for multi-arms bandit problem

2.2.1 Random/ϵ-greedy/Gradient Bandit Algorithm

We use a random algorithm and an ϵ-greedy algorithm as a
baseline for more advanced algorithms.

In academic experiments such as [Theocharous et al.,
2015], ϵ-greedy algorithm is widely used because of their
balance between efficiency and effectiveness. Moreover,
the ϵ-greedy algorithm is often employed in practice since
it is efficient and delivers a robust result.

The [Sutton and Barto, 2018] provides the basic algo-
rithms for MAB problems, including Gradient Bandit Al-
gorithm using the softmax function.

2.2.2 Upper Confident Bound

[Auer et al., 2002] represents the application of the Upper
Confident Bound (UCB) algorithm to the multi-armed ban-
dit problem. This paper proposes UCB1, which achieves
logarithmic regret without preliminary knowledge about the
reward distributions. They denote the second term of the

UCB score as
√

2 log t
Nt(a)

.
In the textbook [Sutton and Barto, 2018], the authors use

the coefficient c instead of
√
2 in the term. Therefore, we

use the textbook’s definition as the UCB score and select c
by the sensitivity analysis.

1

https://github.com/YorkNishi999/cs839_rl_project_for_submission


Attributes Values

Action Space {1, ..., n}
Observation Space {(impi, clicki)}ni=1

Actions k ∈ {1, ..., n}
Rewards 1: Clicked, 0: Otherwise

Table 1. Gym-Adserver attributes

2.2.3 Thompson Sampling

The paper [Agrawal and Goyal, 2012] applies the concept
of Thompson Sampling, which is proposed by [Thompson,
1933], to a practical algorithm for the MAB problem.

2.3. Metrics to evaluate algorithms in multi-bandit
problem

[Li et al., 2010] adopts CTR as one of the primary met-
rics to evaluate the recommendation quality of personalized
news articles in the MAB problem. We use the same metrics
since our simulated environment is simplified and suitable
for calculating CTR.

3. Methodology
3.1. Environment

[Falossi, 2021] provides a simulated environment in
an OpenAI gym. This environment implements a typical
multi-armed bandit scenario where an agent selects an ad-
vertisement to be displayed within k ads and counts it as one
impression. If the displayed ad is clicked, the agent obtains
the reward (= 1), while it gets zero as its reward without
clicking. In this research, we use this environment for the
evaluation of algorithms.

The table 1 shows the attributes of Gym-Adserver1.

3.2. Algorithms

We compare the performances among five representa-
tive algorithms for the multi-armed bandit problem: ran-
dom algorithm, ϵ-greedy algorithm, Gradient Bandit algo-
rithm, Upper-Confidence-Bound Action Selection (UCB)
algorithm, and Thompson Sampling algorithm.

3.2.1 Random and ϵ-greedy Algorithms

The random algorithm continues to select the arm at ran-
dom through the episodes. The ϵ-greedy algorithm adopts
the greedy algorithm with the probability 1−ϵ, while it ran-
domly takes the arm with the probability ϵ. The algorithm
has the hyperparameter ϵ, so it should be tested by the sen-
sitivity analysis.

1https://github.com/falox/gym- adserver/blob/
master/README.md

Algorithm: UCB algorithm
Take all arms once
for t = K+1, ..., T do

Calculate the UCB score of each arm µ̄i(t)
Take ith arm based on argmaxi∈{1,...,K} µ̄i(t)

End for

Table 2. UCB algorithm.

3.2.2 Gradient Bandit Algorithms

We can use ’preference’ for actions H(a) for deciding the
agent’s action instead of the reward. We define the prefer-
ence as the action probability by soft-max distribution such
that

P (At = a) =
expHt(a)∑k
b=1 expHt(b)

= πt(a)

where Ht(a) denotes the preference for action a at time
t, and πt(a) denotes that the probability of taking action a
at time t. Note that we initialize H1(a) = 0 for all a.

Based on the soft-max action preference, the stochas-
tic gradient ascent algorithm updates the preference by the
equations below:

Ht+1(At) = Ht(At) + α(Rt − R̄t)(1− πt(At))

Ht+1(At) = Ht(At)− α(Rt − R̄t)πt(At) (a ̸= At)

where step size α > 0 and Rt denotes the reward at time
t and R̄t does the average reward from 1 to time t− 1.

3.2.3 UCB Algorithm

According to [Auer et al., 2002], we can define the new
algorithm with the adjustment of the probability of the ex-
ploration compared to ϵ-greedy; we utilize the likelihood
estimation of the mean in the arms’ hidden distribution.

We define the estimated mean, named UCB score, µ̄i(t)
as follows:

µ̄i(t) = µ̂i(t) + c

√
log t

Ni(t)
(1)

where µ̂i(t) is the sample mean and Ni(t) is the number
of the selection of the ith arm at the time t.

The UCB algorithm is shown in the table 2. In the table,
K denotes the number of arms, and T denotes the number
of episodes.

3.2.4 Thompson Sampling Algorithm

Thompson sampling was proposed in [Thompson, 1933]
in 1933. This algorithm formulates probability-matching
method using Bayesian statistics framework.

2

https://github.com/falox/gym-adserver/blob/master/README.md
https://github.com/falox/gym-adserver/blob/master/README.md


Algorithm: Thompson Sampling
For each arm i = 1, ..., N set ni = 0, mi = 0
for t = 1, ..., T do

Sample µ̃i from Beta(α+mi, β + ni −mi)
Take ith arm based on argmaxi∈{1,...,K} µ̄i(t)
See Reward Ri(t) ∈ {0, 1}
ni = ni + 1, mi = mi +Ri(t)

End for

Table 3. Thompson Sampling.

We formulate Thompson Sampling based on
[Junya Honda, 2016]. In Thompson Sampling, we as-
sume that the prior distribution generates the parameter µi

in the hidden distribution. We assume that the prior distri-
bution is the beta distribution because of its conjugation.
Here, the beta distribution is formulated by the equation
below:

f(x|α, β) = xα−1(1− x)β−1

B(α, β)

where B(α, β) denotes a beta function.
Based on the prior distribution, we consider the posterior

of µi. If the agent takes the ith arm ni times and obtains one
reward mi times and zero ni −mi times. Then, we obtain
the posterior below by Bayesian theorem:

posterior(µ|observation) = B(α+mi, β + ni −mi)

If we derive the expectation for each arm, we are sup-
posed to marginalize by µ. Nevertheless, for the imple-
mentation, the paper [Agrawal and Goyal, 2012] presents
a practical algorithm for the multi-arm bandit problem that
applies the Thompson Sampling; we show the algorithm in
table 3 (we modify the original algorithm of [Agrawal and
Goyal, 2012] along with [Junya Honda, 2016]).

4. Empirical Study
ϵ-greedy, Gradient Bandit, and UCB algorithms have

room to select their hyperparameters; ϵ, step size α, and c,
respectively. Therefore, we first show the sensitivity anal-
ysis among the three algorithms to decide their hyperpa-
rameters. Then, we conclude which algorithm is the best
performer in the simulated environment through the com-
parative analysis among five algorithms.

During this experiment, we set 10,000 as the number of
terminal episodes.

4.1. Hypothesis

We hypothesize that the UCB and Thompson sampling
are competitive algorithms among the five, and the two al-
gorithms perform equally well; here, the better performance

Figure 1. The figure shows the average rewards of ϵ-greedy and
gradient bandit algorithm. The averages are calculated by running
20 times.

denotes that the average reward of the algorithm on the con-
vergence is larger than other algorithms.

4.2. Sensitivity Analysis

4.2.1 ϵ-greedy Algorithm

ϵ-greedy algorithm has the hyperparameter of ϵ, which is
the probability of taking a random choice for the action. We
implement the algorithm with respect to ϵs from 0.01 to 0.09
in 0.01 increments and from 0.1 to 0.9 in 0.1 increments.
Figure 1 shows the results; we use ϵ = 0.1 to show the
comparative analysis among the five algorithms.

4.2.2 Gradient Bandit Algorithms

The gradient bandit algorithm has the hyperparameter of
step size α. We implement the algorithm in the gym-
adserver environment with respect to α from 0.01 to 0.09
in 0.01 increments and from 0.1 to 0.9 in 0.1 increments.
Figure 1 shows the results; along with the result, we take
α = 0.06 when we show the comparative analysis among
the five algorithms.

4.2.3 UCB Algorithm

UCB algorithm has the hyperparameter of c to weigh the

second term of the UCB score
√

log t
Nt(a)

. We implement the
sensitivity analysis with respect to c from 0.01 to 0.09 in
0.01 increments, from 0.1 to 0.9 in 0.1 increments, and from
1 to 9 in 1 increment. Fig 2 shows the result, which leads us
to take c = 0.1 as a hyperparameter of the UCB algorithm
in the comparative analysis.

3



Figure 2. The figure shows the average rewards of UCB algorithm.
The averages are calculated by running 20 times.

Figure 3. The figure shows the average rewards of each algorithm.
This results is calculated by running 100 times.

4.3. Comparative Analysis

We plot the performance of each algorithm on fig 3; it
shows that the UCB algorithm and Thompson sampling per-
form better than others in ad recommender simulation envi-
ronment, as we hypothesize. If we increase the number of
epochs, both algorithms’ performance would be the same.

Note that the performance is averaged over 100-time ex-
periments, and the standard deviation of the calculation is
shown in fig 4.

5. Conclusion
We experiment with the MAB algorithms as agents in

the simulated ad recommender system; we conclude that
the UCB and Thompson Sampling perform well in the sim-
ulated environment. Interestingly, ϵ-greedy algorithm per-

Figure 4. The figure shows the standard deviation of the average
rewards of each algorithm. This results is calculated by running
100 times.

forms third best; it provides some evidence for the practical
use of this algorithm.

The simplified environment constrains this experiment.
Therefore, we should analyze the ad recommendation in re-
alistic conditions, such as non-stationary, or evaluate the al-
gorithms by more long-term-basis metrics. Moreover, the
actual experiment depends on the industry; the strategy of
the ad recommendation by gaming companies is different
from that of beauty companies, being evaluated in actual
situations.

In the future study, we can introduce other algorithms for
the multi-armed bandit problem, such as UCT [Kocsis and
Szepesvári, 2006], to find more effective arms. Addition-
ally, we can apply Non-Stationarity to MAB and formulate
the ad recommendation problem in practice because it is
common to the distributions changing over time. [Koulouri-
otis and Xanthopoulos, 2008] lists the algorithms for Non-
stationary MAB and can be applied to ad recommender sys-
tems.

Regarding metrics, because reinforcement learning can
deal with the long-term objective, we can consider the Life
Time Value [Theocharous and Hallak, 2013] as metrics and
introduce the Markov Decision Process into the ad recom-
mender system to apply the recent reinforcement algorithms
such as DQN [Zhao et al., 2019] or A2C [Mnih et al., 2016].

References
[Agrawal and Goyal, 2012] Agrawal, S. and Goyal, N. (2012).

Analysis of thompson sampling for the multi-armed bandit
problem. In Mannor, S., Srebro, N., and Williamson, R. C.,
editors, Proceedings of the 25th Annual Conference on Learn-
ing Theory, volume 23 of Proceedings of Machine Learning
Research, pages 39.1–39.26, Edinburgh, Scotland. PMLR. 2, 3

4



[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P.
(2002). Finite-time analysis of the multiarmed bandit problem.
Mach. Learn., 47(2–3):235–256. 1, 2

[Falossi, 2021] Falossi, A. (2021). gym-adserver. 1, 2

[Junya Honda, 2016] Junya Honda, A. N. (2016). Theory and al-
gorithms for bandit problems. Kodansya. 3

[Kocsis and Szepesvári, 2006] Kocsis, L. and Szepesvári, C.
(2006). Bandit based monte-carlo planning. In Proceed-
ings of the 17th European Conference on Machine Learning,
ECML’06, page 282–293, Berlin, Heidelberg. Springer-Verlag.
4

[Koulouriotis and Xanthopoulos, 2008] Koulouriotis, D. and
Xanthopoulos, A. (2008). Reinforcement learning and
evolutionary algorithms for non-stationary multi-armed
bandit problems. Applied Mathematics and Computation,
196(2):913–922. 4

[Langheinrich et al., 1999] Langheinrich, M., Nakamura, A.,
Abe, N., Kamba, T., and Koseki, Y. (1999). Unintrusive cus-
tomization techniques for web advertising. Computer Net-
works, 31(11):1259–1272. 1

[Li et al., 2010] Li, L., Chu, W., Langford, J., and Schapire, R. E.
(2010). A contextual-bandit approach to personalized news ar-
ticle recommendation. In Proceedings of the 19th international
conference on World wide web, pages 661–670. 2

[Mnih et al., 2016] Mnih, V., Badia, A. P., Mirza, M., Graves,
A., Lillicrap, T., Harley, T., Silver, D., and Kavukcuoglu, K.
(2016). Asynchronous methods for deep reinforcement learn-
ing. In International conference on machine learning, pages
1928–1937. PMLR. 4

[Scott, 2010] Scott, S. L. (2010). A modern bayesian look at the
multi-armed bandit. Applied Stochastic Models in Business and
Industry, 26(6):639–658. 1

[Slivkins, 2019] Slivkins, A. (2019). Introduction to multi-armed
bandits. 1

[Sutton and Barto, 2018] Sutton, R. S. and Barto, A. G. (2018).
Reinforcement learning: An introduction (2nd ed.). MIT press.
1

[Theocharous and Hallak, 2013] Theocharous, G. and Hallak, A.
(2013). Lifetime value marketing using reinforcement learning.
RLDM 2013, page 19. 4

[Theocharous et al., 2015] Theocharous, G., Thomas, P. S., and
Ghavamzadeh, M. (2015). Personalized ad recommendation
systems for life-time value optimization with guarantees. In
Proceedings of the 24th International Conference on Artificial
Intelligence, IJCAI’15, page 1806–1812. AAAI Press. 1

[Thompson, 1933] Thompson, W. R. (1933). On the likelihood
that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3/4):285–294. 2

[Zhao et al., 2019] Zhao, X., Gu, C., Zhang, H., Liu, X., Yang,
X., and Tang, J. (2019). Deep reinforcement learning for online
advertising in recommender systems. CoRR, abs/1909.03602.
4

5


	. Introduction
	. Literature Review
	. Multi-Armed Bandit problem for ad recommender systems
	. Algorithms for multi-arms bandit problem
	Random/-greedy/Gradient Bandit Algorithm
	Upper Confident Bound
	Thompson Sampling

	. Metrics to evaluate algorithms in multi-bandit problem

	. Methodology
	. Environment
	. Algorithms
	Random and -greedy Algorithms
	Gradient Bandit Algorithms
	UCB Algorithm
	Thompson Sampling Algorithm


	. Empirical Study
	. Hypothesis
	. Sensitivity Analysis
	-greedy Algorithm
	Gradient Bandit Algorithms
	UCB Algorithm

	. Comparative Analysis

	. Conclusion

